API / Belt / Belt_Set

Belt_Set

An immutable sorted set module which allows customized compare behavior.

The implementation uses balanced binary trees, and therefore searching and insertion take time logarithmic in the size of the map.

For more info on this module's usage of identity, make and others, please see the top level documentation of Belt, A special encoding for collection safety.

Example usage:

RES
module PairComparator = Belt.Id.MakeComparable({ type t = (int, int) let cmp = ((a0, a1), (b0, b1)) => switch (Pervasives.compare(a0, b0)) { | 0 => Pervasives.compare(a1, b1) | c => c } }) let mySet = Belt.Set.make(~id=module(PairComparator)) let mySet2 = Belt.Set.add(mySet, (1, 2))

Note: This module's examples will assume a predeclared module for integers called IntCmp. It is declared like this:

RES
module IntCmp = Belt.Id.MakeComparable({ type t = int let cmp = Pervasives.compare })

undefined

Specialized when value type is int, more efficient than the generic type, its compare behavior is fixed using the built-in comparison

module Int = Belt_SetInt

undefined

Specialized when value type is string, more efficient than the generic type, its compare behavior is fixed using the built-in comparison

module String = Belt_SetString

undefined

This module separates identity from data, it is a bit more verbose but slightly more efficient due to the fact that there is no need to pack identity and data back after each operation

module Dict = Belt_SetDict

t

'value is the element type

'identity the identity of the collection

type t<'value, 'identity>

id

The identity needed for making a set from scratch

type id<'value, 'id> = Belt_Id.comparable<'value, 'id>

make

Creates a new set by taking in the comparator

RES
let set = Belt.Set.make(~id=module(IntCmp))
let make: (~id: id<'value, 'id>) => t<'value, 'id>

fromArray

Creates new set from array of elements.

RES
let s0 = Belt.Set.fromArray([1, 3, 2, 4], ~id=module(IntCmp)) s0->Belt.Set.toArray /* [1, 2, 3, 4] */
let fromArray: (array<'value>, ~id: id<'value, 'id>) => t<'value, 'id>

fromSortedArrayUnsafe

The same as [fromArray][#fromarray] except it is after assuming the input array is already sorted.

let fromSortedArrayUnsafe: (array<'value>, ~id: id<'value, 'id>) => t<'value, 'id>

isEmpty

Checks if set is empty.

RES
let empty = Belt.Set.fromArray([], ~id=module(IntCmp)) let notEmpty = Belt.Set.fromArray([1],~id=module(IntCmp)) Belt.Set.isEmpty(empty) /* true */ Belt.Set.isEmpty(notEmpty) /* false */
let isEmpty: t<'a, 'b> => bool

has

Checks if element exists in set.

RES
let set = Belt.Set.fromArray([1, 4, 2, 5], ~id=module(IntCmp)) set->Belt.Set.has(3) /* false */ set->Belt.Set.has(1) /* true */
let has: (t<'value, 'id>, 'value) => bool

add

Adds element to set. If element existed in set, value is unchanged.

RES
let s0 = Belt.Set.make(~id=module(IntCmp)) let s1 = s0->Belt.Set.add(1) let s2 = s1->Belt.Set.add(2) let s3 = s2->Belt.Set.add(2) s0->Belt.Set.toArray /* [] */ s1->Belt.Set.toArray /* [1] */ s2->Belt.Set.toArray /* [1, 2] */ s3->Belt.Set.toArray /* [1,2 ] */ s2 == s3 /* true */
let add: (t<'value, 'id>, 'value) => t<'value, 'id>

mergeMany

Adds each element of array to set. Unlike add, the reference of return value might be changed even if all values in array already exist in set

RES
let set = Belt.Set.make(~id=module(IntCmp)) let newSet = set->Belt.Set.mergeMany([5, 4, 3, 2, 1]) newSet->Belt.Set.toArray /* [1, 2, 3, 4, 5] */
let mergeMany: (t<'value, 'id>, array<'value>) => t<'value, 'id>

remove

Removes element from set. If element did not exist in set, value is unchanged.

RES
let s0 = Belt.Set.fromArray([2,3,1,4,5], ~id=module(IntCmp)) let s1 = s0->Belt.Set.remove(1) let s2 = s1->Belt.Set.remove(3) let s3 = s2->Belt.Set.remove(3) s1->Belt.Set.toArray /* [2,3,4,5] */ s2->Belt.Set.toArray /* [2,4,5] */ s2 == s3 /* true */
let remove: (t<'value, 'id>, 'value) => t<'value, 'id>

removeMany

Removes each element of array from set. Unlike remove, the reference of return value might be changed even if none of values in array existed in set.

RES
let set = Belt.Set.fromArray([1, 2, 3, 4],~id=module(IntCmp)) let newSet = set->Belt.Set.removeMany([5, 4, 3, 2, 1]) newSet->Belt.Set.toArray /* [] */
let removeMany: (t<'value, 'id>, array<'value>) => t<'value, 'id>

union

Returns union of two sets.

RES
let s0 = Belt.Set.fromArray([5,2,3,5,6], ~id=module(IntCmp)) let s1 = Belt.Set.fromArray([5,2,3,1,5,4], ~id=module(IntCmp)) let union = Belt.Set.union(s0, s1) union->Belt.Set.toArray /* [1,2,3,4,5,6] */
let union: (t<'value, 'id>, t<'value, 'id>) => t<'value, 'id>

intersect

Returns intersection of two sets.

RES
let s0 = Belt.Set.fromArray([5,2,3,5,6], ~id=module(IntCmp)) let s1 = Belt.Set.fromArray([5,2,3,1,5,4], ~id=module(IntCmp)) let intersect = Belt.Set.intersect(s0, s1) intersect->Belt.Set.toArray /* [2,3,5] */
let intersect: (t<'value, 'id>, t<'value, 'id>) => t<'value, 'id>

diff

Returns elements from first set, not existing in second set.

RES
let s0 = Belt.Set.fromArray([5,2,3,5,6], ~id=module(IntCmp)) let s1 = Belt.Set.fromArray([5,2,3,1,5,4], ~id=module(IntCmp)) Belt.Set.toArray(Belt.Set.diff(s0, s1)) /* [6] */ Belt.Set.toArray(Belt.Set.diff(s1,s0)) /* [1,4] */
let diff: (t<'value, 'id>, t<'value, 'id>) => t<'value, 'id>

subset

Checks if second set is subset of first set.

RES
let s0 = Belt.Set.fromArray([5,2,3,5,6], ~id=module(IntCmp)) let s1 = Belt.Set.fromArray([5,2,3,1,5,4], ~id=module(IntCmp)) let s2 = Belt.Set.intersect(s0, s1) Belt.Set.subset(s2, s0) /* true */ Belt.Set.subset(s2, s1) /* true */ Belt.Set.subset(s1, s0) /* false */
let subset: (t<'value, 'id>, t<'value, 'id>) => bool

cmp

Total ordering between sets. Can be used as the ordering function for doing sets of sets. It compares size first and then iterates over each element following the order of elements.

let cmp: (t<'value, 'id>, t<'value, 'id>) => int

eq

Checks if two sets are equal.

RES
let s0 = Belt.Set.fromArray([5,2,3], ~id=module(IntCmp)) let s1 = Belt.Set.fromArray([3,2,5], ~id=module(IntCmp)) Belt.Set.eq(s0, s1) /* true */
let eq: (t<'value, 'id>, t<'value, 'id>) => bool

forEachU

Same as forEach but takes uncurried functon.

let forEachU: (t<'value, 'id>, (. 'value) => unit) => unit

forEach

Applies function f in turn to all elements of set in increasing order.

RES
let s0 = Belt.Set.fromArray([5,2,3,5,6], ~id=module(IntCmp)) let acc = ref(list{}) s0->Belt.Set.forEach(x => { acc := Belt.List.add(acc.contents, x) }) acc /* [6,5,3,2] */
let forEach: (t<'value, 'id>, 'value => unit) => unit

reduceU

let reduceU: (t<'value, 'id>, 'a, (. 'a, 'value) => 'a) => 'a

reduce

Applies function f to each element of set in increasing order. Function f has two parameters: the item from the set and an “accumulator”, which starts with a value of initialValue. reduce returns the final value of the accumulator.

RES
let s0 = Belt.Set.fromArray([5,2,3,5,6], ~id=module(IntCmp)) s0->Belt.Set.reduce(list{}, (acc, element) => acc->Belt.List.add(element) ) /* [6,5,3,2] */
let reduce: (t<'value, 'id>, 'a, ('a, 'value) => 'a) => 'a

everyU

let everyU: (t<'value, 'id>, (. 'value) => bool) => bool

every

Checks if all elements of the set satisfy the predicate. Order unspecified.

RES
let isEven = x => mod(x, 2) == 0 let s0 = Belt.Set.fromArray([2,4,6,8], ~id=module(IntCmp)) s0->Belt.Set.every(isEven) /* true */
let every: (t<'value, 'id>, 'value => bool) => bool

someU

let someU: (t<'value, 'id>, (. 'value) => bool) => bool

some

Checks if at least one element of the set satisfies the predicate.

RES
let isOdd = x => mod(x, 2) != 0 let s0 = Belt.Set.fromArray([1,2,4,6,8], ~id=module(IntCmp)) s0->Belt.Set.some(isOdd) /* true */
let some: (t<'value, 'id>, 'value => bool) => bool

keepU

let keepU: (t<'value, 'id>, (. 'value) => bool) => t<'value, 'id>

keep

Returns the set of all elements that satisfy the predicate.

RES
let isEven = x => mod(x, 2) == 0 let s0 = Belt.Set.fromArray([1,2,3,4,5], ~id=module(IntCmp)) let s1 = s0->Belt.Set.keep(isEven) s1->Belt.Set.toArray /* [2,4] */
let keep: (t<'value, 'id>, 'value => bool) => t<'value, 'id>

partitionU

let partitionU: (t<'value, 'id>, (. 'value) => bool) => (t<'value, 'id>, t<'value, 'id>)

partition

Returns a pair of sets, where first is the set of all the elements of set that satisfy the predicate, and second is the set of all the elements of set that do not satisfy the predicate.

RES
let isOdd = x => mod(x, 2) != 0 let s0 = Belt.Set.fromArray([1,2,3,4,5], ~id=module(IntCmp)) let (s1, s2) = s0->Belt.Set.partition(isOdd) s1->Belt.Set.toArray /* [1,3,5] */ s2->Belt.Set.toArray /* [2,4] */
let partition: (t<'value, 'id>, 'value => bool) => (t<'value, 'id>, t<'value, 'id>)

size

Returns size of the set.

RES
let s0 = Belt.Set.fromArray([1,2,3,4], ~id=module(IntCmp)) s0->Belt.Set.size /* 4 */
let size: t<'value, 'id> => int

toArray

Returns array of ordered set elements.

RES
let s0 = Belt.Set.fromArray([3,2,1,5], ~id=module(IntCmp)) s0->Belt.Set.toArray /* [1,2,3,5] */
let toArray: t<'value, 'id> => array<'value>

toList

Returns list of ordered set elements.

RES
let s0 = Belt.Set.fromArray([3,2,1,5], ~id=module(IntCmp)) s0->Belt.Set.toList /* [1,2,3,5] */
let toList: t<'value, 'id> => list<'value>

minimum

Returns minimum value of the collection. None if collection is empty.

RES
let s0 = Belt.Set.make(~id=module(IntCmp)) let s1 = Belt.Set.fromArray([3,2,1,5], ~id=module(IntCmp)) s0->Belt.Set.minimum /* None */ s1->Belt.Set.minimum /* Some(1) */
let minimum: t<'value, 'id> => option<'value>

minUndefined

Returns minimum value of the collection. undefined if collection is empty.

RES
let s0 = Belt.Set.make(~id=module(IntCmp)) let s1 = Belt.Set.fromArray([3,2,1,5], ~id=module(IntCmp)) s0->Belt.Set.minUndefined /* undefined */ s1->Belt.Set.minUndefined /* 1 */
let minUndefined: t<'value, 'id> => Js.undefined<'value>

maximum

Returns maximum value of the collection. None if collection is empty.

RES
let s0 = Belt.Set.make(~id=module(IntCmp)) let s1 = Belt.Set.fromArray([3,2,1,5], ~id=module(IntCmp)) s0->Belt.Set.maximum /* None */ s1->Belt.Set.maximum /* Some(5) */
let maximum: t<'value, 'id> => option<'value>

maxUndefined

Returns maximum value of the collection. undefined if collection is empty.

RES
let s0 = Belt.Set.make(~id=module(IntCmp)) let s1 = Belt.Set.fromArray([3,2,1,5], ~id=module(IntCmp)) s0->Belt.Set.maxUndefined /* undefined */ s1->Belt.Set.maxUndefined /* 5 */
let maxUndefined: t<'value, 'id> => Js.undefined<'value>

get

Returns the reference of the value which is equivalent to value using the comparator specifiecd by this collection. Returns None if element does not exist.

RES
let s0 = Belt.Set.fromArray([1,2,3,4,5], ~id=module(IntCmp)) s0->Belt.Set.get(3) /* Some(3) */ s0->Belt.Set.get(20) /* None */
let get: (t<'value, 'id>, 'value) => option<'value>

getUndefined

Same as get but returns undefined when element does not exist.

let getUndefined: (t<'value, 'id>, 'value) => Js.undefined<'value>

getExn

Same as get but raise when element does not exist.

let getExn: (t<'value, 'id>, 'value) => 'value

split

Returns a tuple ((smaller, larger), present), present is true when element exist in set.

RES
let s0 = Belt.Set.fromArray([1,2,3,4,5], ~id=module(IntCmp)) let ((smaller, larger), present) = s0->Belt.Set.split(3) present /* true */ smaller->Belt.Set.toArray /* [1,2] */ larger->Belt.Set.toArray /* [4,5] */
let split: (t<'value, 'id>, 'value) => ((t<'value, 'id>, t<'value, 'id>), bool)

checkInvariantInternal

raise when invariant is not held

let checkInvariantInternal: t<'a, 'b> => unit

getData

Advanced usage only

Returns the raw data (detached from comparator), but its type is still manifested, so that user can pass identity directly without boxing.

let getData: t<'value, 'id> => Belt_SetDict.t<'value, 'id>

getId

Advanced usage only

Returns the identity of set.

let getId: t<'value, 'id> => id<'value, 'id>

packIdData

Advanced usage only

Returns the packed collection.

let packIdData: (~id: id<'value, 'id>, ~data: Belt_SetDict.t<'value, 'id>) => t<'value, 'id>